Probabilistic Inference for Quantum Programs

Charles Yuan
MIT CSAIL
Cambridge, MA, USA

Abstract

The design of quantum computers and quantum algorithms
requires the ability to reason about uncertainty due to the
inevitability of quantum noise on today’s hardware. Mean-
while, probabilistic inference can be used to build informative
models that learn latent parameters of interest from observa-
tions. We propose a probabilistic and quantum programming
language featuring automatic inference of error models from
empirical measurement data, streamlining and generalizing
our ability to program on noisy systems.

1 Introduction

Designing algorithms to execute on quantum computers re-
quires grappling with inherent quantum noise, as foreseeable
quantum hardware does not perfectly isolate qubits from
their environment and can introduce e.g. random bit flip
errors at rates that are orders of magnitude higher than clas-
sical digital circuits [14]. Though quantum error-correcting
codes [17] have been devised to mitigate the destructive ef-
fect of noise in computation, they generally require too many
physical qubits to be deployed extensively today. Conse-
quently, quantum hardware does not preserve the semantics
of idealized constructs in existing programming languages.
Developing a quantum program that satisfies its specifi-
cation in the presence of noise requires an error model that
describes possible errors and their likelihood of occurrence.
For example, an error model may specify that any quan-
tum gate is followed by a bit flip error with probability p.
Commonly modeled errors include bit flips, represented by
application of the Pauli-X gate, and phase flips by the Pauli-Z
gate. The theory of quantum channels models more complex
errors, such as depolarization and amplitude damping [14].
Given an error model, a developer can simulate the potential
effects of errors or statically reason about the reliability of
their program. Models can be imported into commercially-
available simulators [11], which then generate a distribution
of output measurements reflecting appropriate noise. There
has also been recent interest in using error models to stati-
cally quantify the reliability of quantum programs [10].
There are several contemporary methodologies for devel-
oping error models. Quantum process tomography is the
most general technique for determining the density matrix,
and thereby error characteristics, of a quantum circuit. How-
ever, ascribing circuit errors to individual gate errors is diffi-
cult and scales exponentially with the number of qubits [4].
Randomized benchmarking is a popular alternative to deter-
mine gate-level error that executes randomized circuits and

fits their average fidelity to a statistical model that predicts
average error per gate. Unlike process tomography, it scales
polynomially in the number of qubits and is robust to errors
in state preparation and measurement [4].

2 Research Problem

The standard quantum error quantification workflow re-
quires the manufacturer or some other experimenter to spec-
ify a error model for programmers to use, which has several
limitations. First, the model may not account for more so-
phisticated forms of noise such as correlated qubit error [14].
Second, programmers must either depend on another party
to provide an accurate model or invest heavily in bench-
marking techniques before they can be productive. Third,
programmers may want embrace noise in programs, as is
done for variational quantum circuits [16], and avoid over-
estimation of noise by a conservative error model.

As an alternative, we propose synthesizing an error model
for a quantum circuit on a hardware device, by executing
the circuit on the noisy device and simultaneously feeding
observed outputs into a probabilistic inference system. The
same quantum program will specify both a hardware circuit
and a probabilistic model over unknown error probabilities.
In this way, the error model becomes programmable, freeing
the programmer from the restrictions of the traditional work-
flow and opening the door to writing programs supporting
a broader range of errors and hardware devices.

Given the observed outputs of a system, probabilistic in-
ference can determine latent parameters and output new pre-
dictions or compute outcome probabilities conditioned on
specific events. Probabilistic programming languages [2, 5-
7, 13, 15] enable inference through primitive operations that
build, manipulate, and sample from probability distributions.
These languages can utilize sampling algorithms like Sequen-
tial and Markov Chain Monte Carlo to compute and sample
from probability distributions efficiently.

A first step in our project is to extend a standard quan-
tum programming language, such as the while-language of
[18], to include probabilistic programming operators such as
observe. As an illustrative example, consider the program in
Figure 1, which constructs a Bell state, then applies bit flip er-
ror to each bit with probability x_err_p. In this program, the
observe statement effectively measures g0 and post-selects
for only the outcome obs_qg@. This program defines a prob-
ability distribution over the remaining unobserved q1. We
may sample from this distribution and determine that q1 is
likely equal to obs_q@, with some probability of discrepancy

f :: Float -> Bool -> Quantum Bool
f x_err_p obs_qg0 = do
g0 <- qubit
gl <- qubit
hadamard q@
gif 9@ (not g1) gl -- establish Bell state
prob_gate not x_err_p q@ -- bit flip error
prob_gate not x_err_p ql
observe q@ obs_qg@ -- observation data
return ql -- unobserved qubit

-- initialize to zero

Figure 1. Probabilistic observation of a Bell pair.

based on x_err_p. Explicitly specifying obs_q1 would allow
us to compute the likelihood of that outcome and enable ML
estimation of the parameter x_err_p.

The classical meaning of observe is to establish a prob-
ability distribution conditioned on its argument being true.
In a quantum language, we may define it as a measurement
followed by conditioning, or post-selection, on the measure-
ment result being |1). The quantum while-language pos-
sesses a denotational semantics based on density matrices
given in [18], and we may extend the semantics with the
usual definition of quantum measurement (Appendix A).

Suppose we have 0, error model parameters such as gate
probabilities, and D, observation samples for a subset of
qubits. Then, the program defines a probability distribution
over unobserved measurement outcomes, which we can use
to evaluate the likelihood function p(6 | D). The program
is then amenable to standard techniques for inference and
learning, such as maximum likelihood estimation. As we
continue executing the program and obtaining more obser-
vational data, we build an increasingly accurate error model.
At convergence, the probabilistic model should be able to ac-
curately simulate program execution on the noisy hardware.

3 Preliminary Results

We have implemented a proof-of-concept of the several pa-
rameter learning scenarios in Mathematica and used its sym-
bolic optimization facilities to perform ML estimation of the
classical error parameter. Specifically, we studied two sce-
narios, the first assuming that we have access to the full
reconstructed state at program termination (i.e. through to-
mography) and the second assuming we only have access to
measurements in some basis.

In the first scenario, we modeled a two-qubit system ini-
tialized in the Bell state \/LE (]00) + |11)) with an indepen-
dent phase flip error with probability p on each qubit. Each
phase error flips the sign of |11), and two errors cancel each
other out, so there are effectively two possible outcomes,
‘/% (]00) + |11)) and \/% (]00) — |11)). The probability of the
first is the probability of zero or two errors, p? + (1 — p)?,
and the second is the probability of one error, 2p(1 — p),

Charles Yuan

from which we compute a binomial likelihood function of
observing m instances of the first and n instances of the
second. Computing the MLE for p at various values of m
and n yields results consistent with our expectations. When
m = n = 50, we infer p = 50%, and increasing m to 1000 re-
sults in p = 2.44% and increasing to 2000 results in p = 1.24%,
consistent with the understanding that observing fewer in-
stances of sign flips indicates a less likely occurrence of error.

In the second scenario, we modeled a similar two-qubit
Bell state subject to various independent errors on each qubit,
and observed computational basis measurements of both
qubits. In the case of bit flip error with probability p, we
computed the probability of observing either |00) or |11)
to be % — p + p? and |01) or |10) to be p(1 — p). Again,
ML estimation produced estimates for p consistent with
our understanding that more instances of differing qubits
indicates more likely error. When we set the ratio of instances
of |00) or |11) to |01) or |10) to be 100:1, we inferred a small
p = 0.50%. Decreasing the ratio to 5:1 yielded p = 9.18%, 5:3
yielded p = 25%, and 1:1 yielded p = 50%.

We also performed the second experiment on phase flip,
amplitude damping, and depolarization error models. As ex-
pected, we were unable to infer the value of p for phase flips
because measurements in the computational basis are un-
correlated with phase error. For the other error models, we
obtained similar results as the bit flip case, with the additional
observation that the impact of observing |11) outcomes dif-
fered from |00) outcomes for amplitude dampening, since it
affects excited |1) states differently from ground |0) states.

4 Discussion

A more realistic implementation of this programming lan-
guage would require additional constructs that bridge quan-
tum states and classical probability distributions. The lan-
guage runtime should automate the computation of like-
lihood functions, possibly building off an existing density
matrix simulator such as [11]. We intend to evaluate the
language by implementing circuits of larger size and with a
diverse set of possible errors. Other potential applications
include simulating circuits with parameters themselves sam-
pled from probability distributions, such as learning varia-
tional quantum circuits from data, or possibly expressing
classical post-processing of quantum algorithms that require
repeated re-sampling such as Shor’s algorithm.

Numerous quantum operations have an intuitive con-
nection to classical probability theory. For example, mea-
surement corresponds to sampling from a distribution, and
density matrix reduction corresponds to marginalization
and conditioning. By integrating the two, we hope to apply
knowledge about efficient probabilistic inference algorithms
to quantum programming and to lower the conceptual diffi-
culty of quantum by connecting it to probability.

Probabilistic Inference for Quantum Programs

Remaining challenges include optimizing the likelihood
function, which is possibly non-convex, as well as scaling
program execution as qubits, observation data, and program
complexity increase. We would also like to develop the theo-
retical underpinning of probabilistic primitives in quantum
programming. For example, post-selection was shown in [1]
to strictly strengthen the computational power of quantum
computers, a fact we must reconcile with our goals.

5 Related Work

The probabilistic nature of quantum programs is well-known,
but generally only at the coarse level of the final joint distri-
bution output by a simulator. Inference as a central tool of
quantum simulation has recently become of interest, as in
[9] who compiled quantum circuits to probabilistic graph-
ical models that could be optimized and re-parameterized
efficiently [3]. proposed a simulation technique for quantum
circuits with error that leverages probabilistic sampling. The
field of variational circuits studies optimization of classical
parameters in circuits, applying techniques like automatic
differentiation to quantum programs [12]. Probability as a
natural tool for studying noise has been developed by, among
others, [10], who devised a program logic to bound the ac-
cumulated error of a program under an error model. Finally,
probabilistic inference is a broadly applicable tool in fields of
science like quantum physics, where [8] has made available
a software suite enabling inference and learning of quantum
systems. We hope that the natural connection between prob-
abilistic inference and physical experimentation will also
lead to interesting applications in quantum computing,.

References

[1] Scott Aaronson. 2005. Quantum Computing, Postselection, and Prob-
abilistic Polynomial-Time. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 461 (2005).

[2] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Prob-
abilistic Programming. Journal of Machine Learning Research 20, 28
(2019), 1-6.

[3] Himanshu Chaudhary, Biplab Mahato, Lakshya Priyadarshi, Naman
Roshan, Utkarsh, and Apoorva D. Patel. 2019. A Software Simulator
for Noisy Quantum Circuits.

[4] J. M. Chow, J. M. Gambetta, L. Tornberg, Jens Koch, Lev S. Bishop, A. A.
Houck, B. R. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf.
2009. Randomized Benchmarking and Process Tomography for Gate
Errors in a Solid-State Qubit. Physical Review Letters 102, 9 (Mar 2009).

[5] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and
Vikash K. Mansinghka. 2019. Gen: A General-Purpose Probabilistic
Programming System with Programmable Inference. In Conference on
Programming Language Design and Implementation.

[6] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. In International
Conference on Artificial Intelligence and Statistics.

[7] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sri-
ram K. Rajamani. 2014. Probabilistic Programming. In Future of Soft-
ware Engineering.

[8] Christopher Granade, Christopher Ferrie, Ian Hincks, Steven
Casagrande, Thomas Alexander, Jonathan Gross, Michal Kononenko,

and Yuval Sanders. 2017. Qlnfer: Statistical inference software for
quantum applications. Quantum 1 (2017).

[9] Yipeng Huang, Steven Holtzen, Todd Millstein, Guy Van den Broeck,
and Margaret Martonosi. 2021. Logical Abstractions for Noisy Vari-
ational Quantum Algorithm Simulation. In Architectural Support for
Programming Languages and Operating Systems.

[10] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying,
Michael Hicks, and Xiaodi Wu. 2019. Quantitative robustness analysis
of quantum programs. In Symposium on Principles of Programming
Languages.

[11] IBM. 2018. Qiskit. https:/qgiskit.org.

[12] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. 2020. Yaojl: Ex-
tensible, Efficient Framework for Quantum Algorithm Design. Quan-
tum 4 (Oct 2020).

[13] P.Narayanan, J. Carette, Wren Romano, Chung chieh Shan, and Robert
Zinkov. 2016. Probabilistic Inference by Program Transformation in
Hakaru (System Description). In International Symposium on Func-
tional and Logic Programming.

[14] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition. Cambridge
University Press.

[15] A. Pfeffer. 2009. Figaro : An Object-Oriented Probabilistic Program-
ming Language.

[16] John Preskill. 2018. Quantum Computing in the NISQ era and beyond.
Quantum 2 (2018).

[17] Peter W. Shor. 1995. Scheme for reducing decoherence in quantum
computer memory. Phys. Rev. A 52 (Oct 1995). Issue 4.

[18] Mingsheng Ying. 2012. Floyd-Hoare Logic for Quantum Programs.
ACM Trans. Program. Lang. Syst. 33, 6 (2012).

A Syntax and Semantics
We may add the observe operator to the quantum while-
language:
s u=skip | q=10) | g :=Ulg] | si;52
| case M[q] of ... |while M[q] do s | observe(q)

MqPM;

tr(pMg)

where M, projects qubit q into the subspace corresponding
to a measurement of |1).

[observe(g)]p =

https://qiskit.org

	Abstract
	1 Introduction
	2 Research Problem
	3 Preliminary Results
	4 Discussion
	5 Related Work
	References
	A Syntax and Semantics

